Observation of Naturally Canalized Phonon Polaritons in LiV₂O₅ Thin Layers

Ana I. F. Tresguerres-Mata^{1†}, Christian Lanza^{1†}, Javier Taboada-Gutiérrez², Joseph. R. Matson³, Gonzalo Álvarez-Pérez^{1,4}, Masahiko Isobe⁵, Aitana Tarazaga Martín-Luengo¹, Jiahua Duan^{1,4}, Stefan Partel⁶, María Vélez^{1,4}, Javier Martín-Sánchez^{1,4}, Alexey Y. Nikitin^{7,8}, Joshua D. Caldwell^{3,9}, Pablo Alonso-González^{1,4}*

¹Department of Physics, University of Oviedo, Oviedo 33006, Spain.
²Department of Quantum Matter Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland.
³Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, 37212, TN, USA.
⁴Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego 33940, Spain.
⁵Max-Planck Institute for Solid State Research, Stuttgart D-70569, Germany.
⁶Vorarlberg University of Applied Sciences, Research Center of Microtechnology, Austria.
⁷Donostia International Physics Center (DIPC), Donostia/San Sebastián 20018, Spain.
⁸IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.
⁹Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA.

*<u>anaiftresguerresmata@uniovi.es</u> <u>pabloalonso@uniovi.es</u> † *These authors contributed equally to this work.*

Polariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α -MoO₃¹⁻⁵, by combining α -MoO₃ and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces. Ideally, it would be possible to canalize polaritons "naturally" in a single pristine layer. Here, we theoretically predict and experimentally demonstrate naturally canalized phonon polaritons in a single thin layer of the vdW crystal LiV₂O₅. In addition to canalization, PhPs in LiV₂O₅ exhibit strong field confinement ($\lambda_p \sim \frac{\lambda_0}{27}$), slow group velocity (0.0015c), and ultra-low losses (lifetimes of 2 ps). Our findings are promising for the implementation of low-loss optical nanodevices where strongly directional light propagation is needed, such as waveguides or optical routers.

Figure

Figure 1: Observation of naturally canalized PhPs in thin LiV₂O₅ layers.

References

- [1] Zheng, Z. et al., Nano Lett. **20** (7), 5301-5308 (2020).
- [2] Hu, G. et al., Nature **582**, 209-213 (2020).
- [3] Chen, M. et al., Nature Materials 19, 1307-1311 (2020).
- [4] Duan, J. et al., Nano Lett. 20, 5323-5329 (2020).
- [5] Duan, J., Álvarez-Pérez, G., Lanza, C. et al., Nat. Mater. 22, 867–872 (2023).